Noninvasive glucose detection in human skin using wavelength modulated differential laser photothermal radiometry
نویسندگان
چکیده
Noninvasive glucose monitoring will greatly improve diabetes management. We applied Wavelength-Modulated Differential Laser Photothermal Radiometry (WM-DPTR) to noninvasive glucose measurements in human skin in vitro in the mid-infrared range. Glucose measurements in human blood serum diffused into a human skin sample (1 mm thickness from abdomen) in the physiological range (21-400 mg/dl) demonstrated high sensitivity and accuracy to meet wide clinical detection requirements. It was found that the glucose sensitivity could be tuned by adjusting the intensity ratio and phase difference of the two laser beams in the WM-DPTR system. The measurement results demonstrated the feasibility of the development of WM-DPTR into a clinically viable noninvasive glucose biosensor.
منابع مشابه
Development of a Noninvasive In-Vehicle Alcohol Biosensor Using Wavelength-Modulated Differential Photothermal Radiometry
Drunk driving is, in Canada, the leading cause of death on the roads. To reduce the number of drinking and driving incidences, new technologies were developed to accurately measure blood alcohol concentration (BAC) and overcome the limitations of current alcohol measuring technologies. In this research, a non-contacting, non-invasive in-vehicle alcohol biosensor is developed using laser-based W...
متن کاملAn absolute calibration method of an ethyl alcohol biosensor based on wavelength-modulated differential photothermal radiometry.
In this work, laser-based wavelength-modulated differential photothermal radiometry (WM-DPTR) is applied to develop a non-invasive in-vehicle alcohol biosensor. WM-DPTR features unprecedented ethanol-specificity and sensitivity by suppressing baseline variations through a differential measurement near the peak and baseline of the mid-infrared ethanol absorption spectrum. Biosensor signal calibr...
متن کاملDiagnosis of pit and fissure caries using frequency-domain infrared photothermal radiometry and modulated laser luminescence.
Non-intrusive, non-contacting frequency-domain photothermal radiometry (FD-PTR or PTR) and frequency-domain luminescence (FD-LUM or LUM) have been used with 659- and 830-nm laser sources to assess the pits and fissures on the occlusal surfaces of human teeth. Fifty-two human teeth were examined with simultaneous measurements of PTR and LUM and were compared to conventional diagnostic methods in...
متن کاملCharacterization of Laser Tattoo Removal Treatment Using Pulsed Photothermal Radiometry
Pulsed photothermal radiometry (PPTR) enables noninvasive determination of temperature depth profiles induced in strongly scattering biological tissues and organs, including human skin, by pulsed laser irradiation. In the present study, we evaluate the potential of this technique for objective characterization of a laser tattoo removal procedure. The study involved 5 healthy volunteers (age 20–...
متن کاملAccurate measurement of blood vessel depth in port wine stained human skin in vivo using pulsed photothermal radiometry.
We report on application of pulsed photothermal radiometry (PPTR) to determine the depth of port wine stain (PWS) blood vessels in human skin. When blood vessels are deep in the PWS skin (>100 microm), conventional PPTR depth profiling can be used to determine PWS depth with sufficient accuracy. When blood vessels are close or partially overlap the epidermal melanin layer, a modified PPTR techn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2012